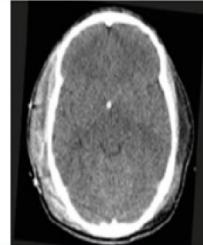


Could Early Decompressive Craniectomy Provide Better Outcomes For Patients Following Traumatic Brain Injury?


Oxford University Hospitals **NHS**
NHS Foundation Trust

BACCN Conference 2016 Glasgow


By Abby Paterson and Laura Beck - Neuro ICU SSN and Head Injury specialist Research Nurse

- This poster will show critical analysis of the evidence surrounding the timing of decompressive craniectomy (DC). It will examine whether early DC provides better outcomes for patients following traumatic brain injury (TBI).
- The pathophysiological process following TBI can lead to neurological damage (secondary brain injury). This occurs due to raised intra cranial pressure preventing optimal cerebral perfusion and oxygen delivery to the brain. Thus causing irreversible ischaemia. (Brain Trauma Foundation, 2007)
- Early intervention and treatment, for increased ICP, can prevent secondary brain injury (American Association of Neurological Surgeons, 2016)

DC is the removal of a large part of the skull which helps overcome the non compliant nature resulting in reduced ICP. It is a second tier therapy and often used as life saving treatment
(Zhang *et al.* 2016. Akyus *et al.*, 2010)

Diffuse oedema pre DC
(ResearchGate.net, 2008-2016)

Cerebral swelling post DC (Ban *et al.*, 2010)

Evidence

Study	Method	Sample size and location	Main outcome measures	Results
DECRA (Cooper J <i>et al.</i> 2011)	Multi centre Randomised control trial (RCT)	N = 155 Australia, New Zealand and Saudi Arabia	1) Extended Glasgow Outcome Score (GOSe) 6 months post injury 2) Days in ICU and treatments for ICP	Early DC group - less days on ICU, less treatments for ICP, worse GOSe score - increased unfavourable outcome
Wen <i>et al.</i> (2011)	Prospective cohort	N = 44 China	Glasgow Outcome Score (GOS) at 6 months post injury (PI)	No difference in GOS for early and late DC
Akyus <i>et al.</i> (2010)	Observational study	N = 76 Turkey	GOS at 12 months PI	Early DC provided better GOS
Cianchi <i>et al.</i> (2012)	Retrospective Cohort	N = 186 Italy	GOS 6 months post ICU	GOS did not differ between early DC, late DC and conservative management groups.
Zhang <i>et al.</i> (2016)	Meta-analysis	N = 282 China	GOS and GOSe (no timing stated)	No significant difference in late or early DC. Pupil abnormality associated with outcome

Discussing the Evidence

- Ineffective randomisation of pupil abnormalities
- Minimal RCTs
- Discrepancy in DC technique
- Does GOS and GOSe provide reliable assessment for analysis of outcome?

Ethical and Nursing Implications

- Post op complications impacting on patient's quality of life (Honeybul & Ho, 2011)
- Possibility of prolonged patient harm physically and psychologically (Madder, 2012)
- Emotional and physical stress for nurses as patient's highly dependent post DC (Livesay & Moser, 2014)

Results and Future Directions

- Non extensive research with many limitations
- Awaiting RCT results - RESCUEicp
- Ongoing RCTs – RESCUEASDH
- "The jury is still out for early DC in TBI"

References

Akyus M, Ucar T, Acikbas C, Kazan S, Yilmaz M and Tuner R (2010) Effect of early bilateral decompressive craniectomy on outcome for severe traumatic brain injury. *Turkish Neurosurgery*, 20 (3) 382-389. American Association of Neurological Surgeons (2016) Traumatic brain injury. Sourced: <http://www.aans.org/ForPatients/Conditions%20and%20Treatments/Traumatic%20BrainInjury.aspx> (accessed 22/03/2016) Ban S, Son Y, Yang H, Chung Y, Lee S, Han D (2010) Analysis of complications following decompressive craniectomy for traumatic brain injury. *Journal of Korean Neurological Society*, 48 (3) 244-250. Brain Trauma Foundation(2007) Guidelines for the management of severe traumatic brain injury. 3rd edition. *Journal of Neurotrauma*, 24 (1) 1-116. Cianchi G, Bonizzoli M, Zaglì G, Valvisone S, Biondi S, Clapetti M, Perrera L, Mariotti F and Peris A (2012) Late decompressive craniectomy after traumatic brain injury: neurological outcome at 6 months after ICU discharge. *Journal of trauma management and outcomes*, 6 (8). Cooper D, Rosenfeld J, Arabi Y, Davies A, D'Urso P, Kossman T, Ponsford J, Seppelt I, Reilly P, Wolfe R. Decompressive craniectomy in diffuse traumatic brain injury (DECRA). (2011) *The New England Journal of Medicine*, 364, 1493 – 1502. Ho KM, Honeybul S and Litton E (2011) Delayed neurological recovery after decompressive craniectomy for severe nonpenetrating traumatic brain injury. *Critical Care Medicine*, 39 (11) 2495-2500. Honeybul S and Ho K (2011) Long term complications of decompressive craniectomy for head injury. *Journal of Neurotrauma*, 28: 929-935. Honeybul S, Janzen C, Kruger K and Ho K (2013) Decompressive craniectomy for severe traumatic brain injury: is life worth living? *Journal of Neurosurgery*, 119: 1566-1575. Livesay S and Moser H (2014) Evidence-based nursing review of craniotomy care. *Stroke*, 45: 217-219. Madder H (2012) Treatment interventions for severe traumatic brain injury: Limited evidence, choice limitations. *Journal of medical ethics*, 38 (11) 662-663. ResearchGate (2008-2016) Heterogeneity of severe traumatic brain injury. sourced: <https://www.researchgate.net/publication/248837291/infographic/Heterogeneity-of-severe-traumatic-brain-injury-111-CT-computed-tomography> (accessed 14/04/2016) Wen L, Wang W, Gong W, Li G, Huang L, Zhan R and Yang X (2011) A prospective study of early versus late craniectomy after traumatic brain injury. *Brain Injury*, 25 (13-14) 1318-1324. Zhang K, Jiang W, Mab T, Wu H (2016) Comparison of early and late decompressive craniectomy on the long term outcome in patients with moderate and severe traumatic brain injury: a meta-analysis. *British journal of neurosurgery*, 30 (2) 251-257.