Endotracheal tube cuff pressure deflations during monitoring by ICU staff – a simulation study

Co-Authors:
Catherine Peutherer, University of Cambridge
Vikesh Patel University of Cambridge,
Emily Hodges Queen Elizabeth Hospital, Kings Lynn

Lead Authors:
Maryanne Mariyaselvam, Queen Elizabeth Hospital, Kings Lynn
Peter Young, Queen Elizabeth Hospital, Kings Lynn
Introduction and background

• Ventilator associated pneumonia (VAP) is the leading cause of infective nosocomial mortality in the intensive care unit (ICU).

• When using an endotracheal tube cuff one must balance between:
 • risk of tracheal ischaemia/necrosis
 • leak of gases/gastric contents
Introduction and background

- High volume low pressure (HVLP) endotracheal tubes (ETT) reduce the risk of pressure ischaemia/necrosis
- HVLP ETT allow pulmonary aspiration even when correctly inflated however (Mariyaselvam et al., 2017)
- Loss of cuff pressure increases pulmonary aspiration (Nseir et al., 2015).
- Cuff pressure should be maintained between 20-30cmH₂O
Introduction and background

- 4-hourly pressure checks recommended
- Performed with:
 - Hand held manometer (most commonly)
 - Automatic cuff pressure monitors
- Commonly recognised that poor control of pressure release buttons of hand held manometers leads to transient deflation (Blanch 2004)
Aim

• To determine whether ICU staff transiently deflate the ETT cuff to below 20 cmH2O, on routine checking of the ETT cuff pressure using a handheld manometer/inflator device.
Methods

- Simulation study
- 20 staff
- ETT cuff inflated to 50 cmH$_2$O
- Identify and correct to the appropriate pressure
Results

• 10/10 nurses and 7/10 doctors attempted cuff pressure check

• 80% nurses and 100% doctors inflated to correct pressure

• 60% of nurses and 57% doctors transiently deflated the cuff below target range when readjusting pressure
Graph to show participant minimum cuff pressure deflation. (optimum >20 cmH2O)
Conclusions

• 4 hourly measurements, poor device design and poor technique contribute to unintentional cuff deflation.

• Suggests need for improved training and supports use of continuous pressure monitoring (Nseir et al. 2015).