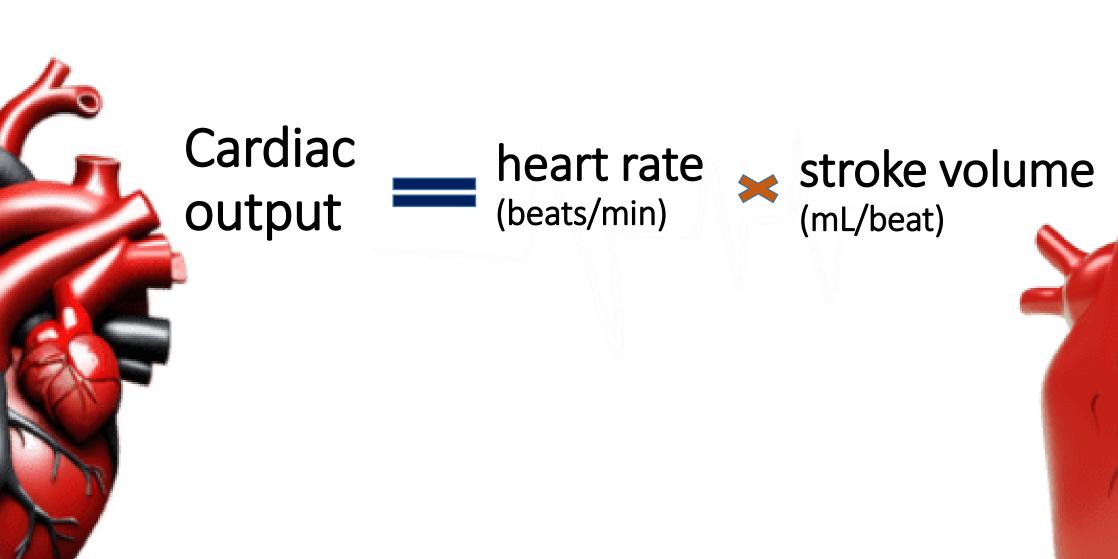

Vasoactive agents in the ICU

David Ogunlabi

Critical Care Nurse, Liver ITU, King's College Hospital, Denmark Hill, London.

Definition


- Vasoactive agents are drugs used in the intensive care units and operating rooms to maintain patients' key hemodynamic variables such as blood pressure, heart rate, cardiac output, and end-organ perfusion within normal ranges.
- They have been classified based on their relative effects on the heart and vascular tone into inotropes and vasopressors.

Inotropic effect:

Increased contractile function of the heart leading to increased cardiac output.

Vasopressor effect:

Increased vascular tone leading to increased peripheral vascular resistance, and by extension increased arterial blood pressure.

Significant receptors of vasoactive agents

Alpha 1 receptor:
located in the smooth
muscle of blood vessels.
They cause constriction and
increase vascular resistance
(vasoconstriction).

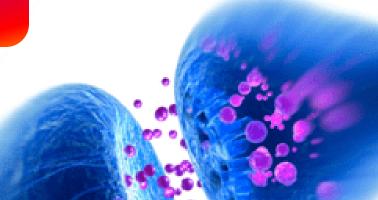
Dopamine receptor:

In the myocardium, stimulation causes increased contractility, heart rate, and cardiac output. In the kidneys, dopamine receptor D1 and D2 stimulation causes diuresis.

Beta 1 receptor:

located in the heart. Stimulation primarily causes increase in heart rate (chronotropy) and contractility of the myocardium (inotropy), leading to increased cardiac output.

Beta 2 receptor:

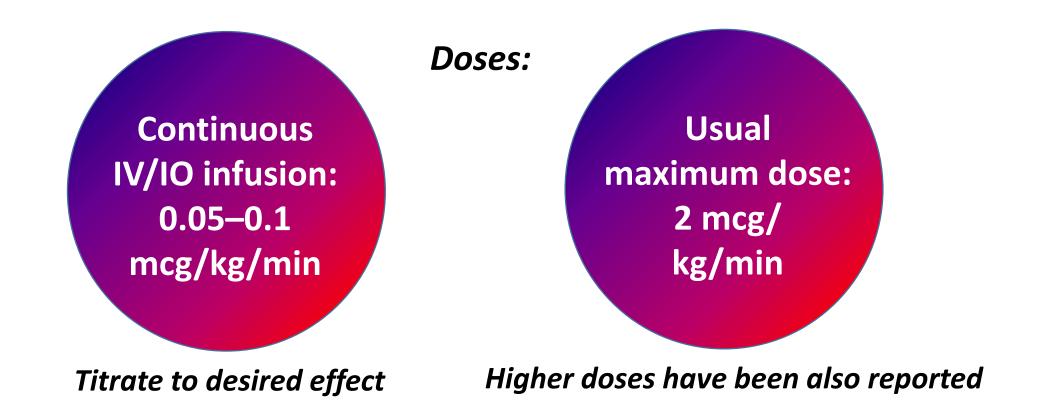

located in the vascular and bronchial smooth muscles. Stimulation primarily causes relaxation of vascular and bronchial smooth muscles causing vasodilation and bronchodilation.

Vasopressin 1 receptor:

causes moderate vasoconstriction in the peripheral arterioles.

Vasopressin 2 receptor:

causes increased water permeability at the renal tubules.



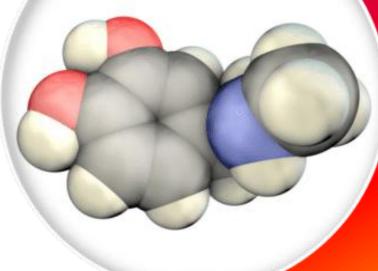
Norepinephrine

- Norepinephrine is a potent agonist of α -1 and β -1 adrenergic receptors commonly used in distributive shock to induce **vasoconstriction** and increase MAP, with minimal impact on heart rate.
- As a result of its dual effects, it can increase systemic vascular resistance without significant increase in heart or decrease in cardiac output.
- It is recommended as the **first-line drug** for treating septic shock, according to the Surviving Sepsis guideline 2021. Studies have shown that after adequate volume resuscitation, noradrenaline increases urine output and creatinine clearance in septic patients.
- Studies comparing norepinephrine with dopamine and epinephrine for shock reversal have demonstrated similar outcomes in terms of shock reversal, with norepinephrine potentially with fewer adverse side effects. Thus making a case for its use as **first-line vasoactive medication** of choice in all shock types.

Norepinephrine

• Unstable in alkaline solutions; should be diluted in dextrose or half-saline solution.

Epinephrine


- Epinephrine has dose-dependent receptor affinities for α and β adrenergic receptors. At low-to-moderate doses, β effects predominate, leading to inotropic support in addition to vasoconstriction. Epinephrine will **increase heart rate** and blood pressure as a result.
- Historically, this mechanism makes epinephrine a preferred agent in the treatment of cardiogenic shock syndromes, particularly when inotropy or cardiac "squeeze" is needed in addition to blood pressure support or in the treatment of **symptomatic bradycardia**.
- Additionally, because epinephrine affects β -1 and β -2, it is the drug of choice for **anaphylactic shock**.
- Some adverse effects unique to epinephrine include **induction of a type B lactic acidosis**, **increased insulin resistance**, and **tachycardia**.

Epinephrine

- Has dose-dependent activity:
- Low doses (<0.05–0.1 mg/kg/min) produce vasodi_x0002_latation (β2 receptors).
- High doses (>0.1 mg/kg/min) produce vasocon_x0002_striction (α receptors) of the skeletal and vascular smooth muscles with a subsequent increase in myocardial oxygen consumption.

Epinephrine

Phenylephrine

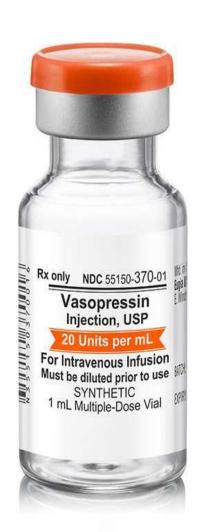
- Phenylephrine acts as a selective agonist of α -1 receptors, exerting minimal or no activity on β receptors. This pharmacological profile makes it an optimal choice for elevating MAP through venous vasoconstriction.
- Phenylephrine has demonstrated effectiveness in mitigating hypotension commonly encountered with both general and neuraxial anesthesia.
- Additionally, its rapid onset of action and short half-life render it particularly suitable for use during surgical procedures when there are transient periods of hypotension from decreases in MAP.

Phenylephrine

Doses:

IV bolus: 5-20
mcg/kg/dose every
10-15 min as
needed (maximum
of 500 mcg/dose)

Continuous IV
infusion: usual
initial dose, 0.1–0.5
mcg/kg/min; titrate
to the desired
response


Dopamine

- Dopamine is likely the most 'promiscuous' vasopressor in terms of receptor activity and associated effects.
- At lower doses of 0–5 mcg/kg/min, dopamine mostly exerts its action via the dopamine receptors which leads primarily to inotropy and renal vasodilation as well as bloodflow.
- At moderate doses of 5–10 mcg/kg/min, dopamine becomes more similar to epinephrine, exerting its action on dopamine and primarily beta-adrenergic receptors, shifting its hemodynamic effects to inotropy.
- At doses >10 mcg/kg/min, dopamine has alpha receptor properties leading to vasoconstriction.
- Dopamine is less favored as a vasopressor due to the results of the SOAP II study with higher incidence of arrhythmia compared to norepinephrine.

Vasopressin

- Stimulates the arginine vasopressin V1 receptors resulting in increased systemic vascular resistance, and V2 receptors causing increased water permeability at the renal tubules (anti-diuretic effect).
- Vasopressin receptors are not located in the pulmonary vasculature making it a suitable option for patients with right-sided heart failure, cardiopulmonary bypass, or pulmonary hypertension.
- It is recommended as an addition when there is an increase in noradrenaline requirement (usually > 0.2 mcg/kg/min).
- Adjunct therapy in the treatment of massive GI bleeding (terlipressin).
- Doses:

Continuous IV infusion: 0.08–10 milliunits/kg/min (0.004–0.6 units/kg/h); start with the lower range of the dose and titrate to effect.

Milrinone

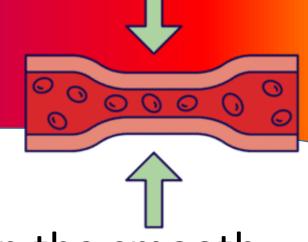
- A selective phosphodiesterase III inhibitor that results in vasodilation, improved cardiac contractility (inotropy), diastolic relaxation (lusitropic effect), with little chronotropic activity.
- Decreases PVR in patients with pulmonary hypertension secondary to severe heart failure, and improve lung compliance.
- A first-line agent for children post cardiac surgery for treatment of low cardiac output syndrome (LCOS).
- An option for children with pulmonary hypertension and vasoconstrictive septic shock.
- IV/IO: Loading dose (optional) 50 mcg/kg over 10–60 min, followed by a continuous IV or intraos_x0002_seous infusion 0.25–0.75 mcg/kg/min; titrate dose to effect.

Levosimendan

- A calcium-sensitizing agent increases the sensitivity of the myocardium to calcium, resulting in potent positive inotropic effects and systemic vasodilation.
- Has a highly active metabolite with a long elimination half-life of 75–80 h; therefore, its cardiac effects last for up to 7–9 days after discontinuation of a 24-h infusion.
- Correct electrolytes before starting levosimendan infusion.
- Electrolytes, renal function, blood gases must be monitored.
- Continuous cardiac monitoring is needed.

Levosimendan

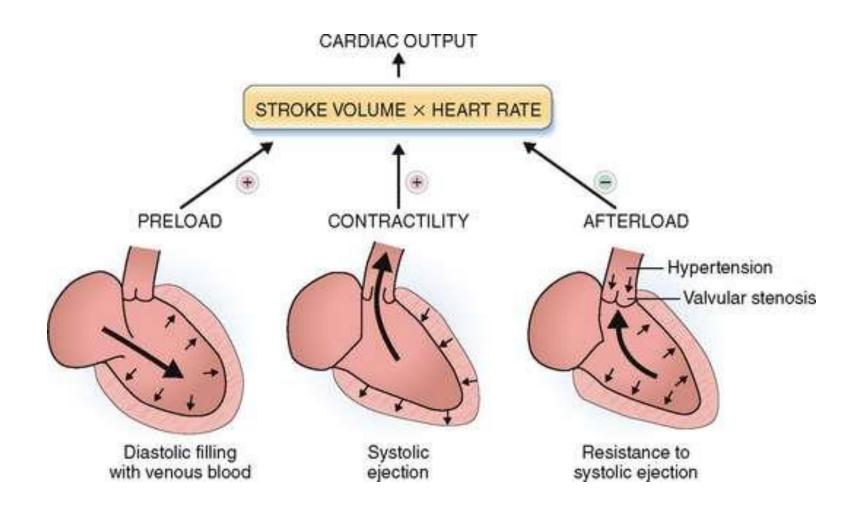
Doses:


- Loading dose 6–12 mcg/kg over 10–30 min, followed
- by an IV infusion of 0.05–0.1 mcg/kg/min; double the
- dose as tolerated every 2–3 h to a target dose of 0.2
- mcg/kg/h; continue infusion for a total of 24–48 h

Do not give a bolus dose to the hypotensive patient

 Use lower loading dose of 6 mcg/kg in case of con_x0002_comitant vasodilators or inotrope infusion

Angiotensin II


- A potent vasoconstrictor that acts directly on the smooth muscles of blood vessels causing vasoconstriction.
- It also stimulates the release of aldosterone leading to sodium and water retention.
- Approved in the USA (December 2017) and in the European Union (August 2019) for use as a second-line vasopressor for the treatment of catecholaminerefractory distributive shock.

Other vasoactive drugs

- Methylene blue:
- Metaraminol:
- Corticosteroids:

The principles of vasoactive therapy

- Consider the indication for therapy.
- Define the therapeutic targets e.g. MAP>65mmHg; Lactate<2
- Titrate drugs to the lowest dose to achieve the therapeutic targets.
- Use drugs with complementary mode of action e.g. dopamine/dobutamine/epinephrine (predominant beta-1 receptor agonists), and noradrenaline/vasopressin (predominant alpha-1 receptor agonists).
- Ensure adequate fluid rescucitation/filling to optimise preload. Fluid administration complements vasoactive drug therapy especially in fluid responsive patients. Caution must be taken in circulatory shock.
- Route of administration should be via a central line whenever possible to facilitate systemic distribution and prevent peripheral extravasation.

Facts to consider about vasoactive therapy

- One drug activates many receptors leading to different effects; e.g., dobutamine activates β 1 receptors that increase CO, and β 2 receptors that induce vasodilation and hypotension.
- Dose-dependent action; e.g., smaller doses of dopamine stimulate $\beta 1$ receptors whereas higher doses stimulate alpha receptors.
- Direct versus reflex actions of some agents; e.g., acti_x0002_vation of β1 receptors by norepinephrine increases HR. In addition, it activates alpha receptors inducing vasoconstriction and MAP elevation. The latter action causes a reflex decrease in the HR leading to offsetting the tachycardic effect.
- Tachyphylaxis may occur over time leading to loss of effect, which necessitates constant titration of the dose.
- Subcutaneous delivery of medications such as heparin and insulin may be decreased by cutaneous vasoconstriction caused by vasopressors.
- Neonates may have less inotropic response compared with older children due to immaturity of the autonomic nervous system.

Monitoring patients on vasoactive therapy.

- Continuous monitoring of cardiovascular parameters for improvement and side-effects.
- Fluid status, electrolytes, glucose, lactate levels, and acid-base status.
- Arterial blood pressure via catheter allows for immediate recognition of changes and precise titration.
- Pulmonary artery catheters may be considered to assess cardiac function.

Thank you for listening.

References.

- Li, F. and Wimer, D. (2025) 'Vasopressor therapy in the intensive care unit,' in University of California, San Francisco Health, The Pharmacist's Expanded Role in Critical Care Medicine. Edited by Y. Alzaidi and M. A. Gebily, pp. 1365–1369. https://doi.org/10.1007/978-3-031-77335-8_50.
- Lim, H.S. (no date) 'Inotropes and vasopressors,' in Hemodynamic Physiology in Advanced Heart Failure and Cardiogenic Shock, pp. 217–220. https://doi.org/10.1007/978-3-031-64740-6_7.
- Al Muqati, H.H., Alakeel, Y.S., and The Author(s) (2024) Inotropes and vasopressors, Manual of Pediatric Cardiac Care. https://doi.org/10.1007/978-981-99-5683-8_64.
- Landoni, G. et al. (2024) 'The use of angiotensin II for the management of distributive shock: expert consensus statements,' Journal of Anesthesia Analgesia and Critical Care, 4(1). https://doi.org/10.1186/s44158-024-00186-y.