Mitigating the Risk of HAP with Oral Hygiene

Jan Powers PhD, RN, CCRN, CCNS, CNRN, FCCM
Clinical Nurse Specialist
Director of Professional Practice and Nursing Research
Parkview Health System, Indiana, USA
Speaker Disclosures

- Speaker is on the Stryker speakers bureau.

- This educational event is supported by Stryker.

- Content and slides were developed by the speaker and meet criteria of being evidence-based, fair and balanced.
Objectives

• Discuss definitions related to Hospital-Acquired Pneumonia (VAP and NV-HAP)

• Understand risk factors for HAP

• Identify importance of oral care for mitigating risk factors of HAP
Ventilator-Associated Pneumonia

- VAP is the most frequent infection occurring in patients after admission to the intensive care unit (ICU)\(^1\).

- In a large European observational study, almost 25% of patients developed an ICU-acquired infection, and the respiratory site accounted for 80% of these infections\(^2\).

- VAP can be linked with increased duration of ventilation, ICU and hospital length of stay, and significantly increased costs\(^2\).

- Prevention of VAP is possibly one of the most cost-effective interventions currently attainable in the ICU\(^3\).

Financial Impact of Hospital-Acquired Infections

<table>
<thead>
<tr>
<th>Infection</th>
<th>Cost per Incident</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAPs</td>
<td>$39,828 per VAP (^1)</td>
</tr>
<tr>
<td>HAPs</td>
<td>$28,008 per HAP (^2)</td>
</tr>
<tr>
<td>CAUTIs</td>
<td>$3,803-$4,687 per CAUTI (^3,4)</td>
</tr>
<tr>
<td>Sacral Pressure Ulcers</td>
<td>$1,606 - $71,503 per sPU (^5,6)</td>
</tr>
<tr>
<td>Heel Pressure Ulcers</td>
<td>$1,606 - $71,503 per hPU (^5,6)</td>
</tr>
<tr>
<td>SSIs</td>
<td>$25,546 per SSI (^7)</td>
</tr>
</tbody>
</table>

Background

HAPs & VAPs

- Hospital-acquired pneumonia (HAP), ventilator-associated pneumonia (VAP), & aspiration pneumonia often start in the oral cavity. Bacteria can colonize in the oropharyngeal area & can be aspirated into the lungs, causing infection.

- VAP development is associated with high rates of morbidity and mortality, and is fatal for 20% - 41% of patients.

- VAP is caused by a number of factors & can lead to prolongation of mechanical ventilation, ICU stay, hospital stay, & associated increases in costs.

- 21.8% of all HAIs are pneumonias. 61% of pneumonias are acquired by non-ventilated patients (NV-HAP).

Hospital-acquired pneumonia rates in UK

- England 26%
- Northern Ireland 28%
- Scotland 20%
- Wales 18%

Multistate Point-Prevalence Survey of Health Care-Associated Infections - NEJM

- 183 hospitals
- 11,282 patients
- 22% of HAIs are pneumonia
- 61% of hospital acquired pneumonias are non-vent patients*

High Mortality, Longer Stays, Increased Costs

<table>
<thead>
<tr>
<th></th>
<th>HAP</th>
<th>VAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>18.7%<sup>1</sup></td>
<td>20 - 41%<sup>2</sup></td>
</tr>
<tr>
<td>Length of Stay</td>
<td>15.2 days<sup>3</sup></td>
<td>23 days<sup>3</sup></td>
</tr>
<tr>
<td>Hospital Costs</td>
<td>$28,008<sup>1</sup></td>
<td>$39,828<sup>4</sup></td>
</tr>
<tr>
<td></td>
<td>• 9.6 more days on vent<sup>5</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 6.1 more days in ICU<sup>5</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 11.5 more days in hospital<sup>5</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• > $40,000 per case to treat (Facility pays the bill)<sup>4</sup></td>
<td></td>
</tr>
</tbody>
</table>

¹ Davis J. The Breadth of Hospital-Acquired Pneumonia: Nonventilated versus Ventilated Patients in Pennsylvania, Pennsylvania Patient Safety Advisory 2012; 9(3):99-105
3 Year Retrospective Study of NVHAP in Pennsylvania

Table 1. Pennsylvania Nosocomial Pneumonia and Related Deaths

<table>
<thead>
<tr>
<th>YEAR</th>
<th>NO. OF NV-HAP</th>
<th>NO. OF NV-HAP CONTRIBUTING TO DEATH</th>
<th>% OF NV-HAP CASES CONTRIBUTING TO DEATH</th>
<th>NO. OF VAP</th>
<th>NO. OF VAP CONTRIBUTING TO DEATH</th>
<th>% OF VAP CASES CONTRIBUTING TO DEATH</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>1,976</td>
<td>363</td>
<td>18.4 (95% CI: 16.5 to 20.3)</td>
<td>922</td>
<td>163</td>
<td>17.7 (95% CI: 15.0 to 20.5)</td>
</tr>
<tr>
<td>2010</td>
<td>1,848</td>
<td>366</td>
<td>19.8 (95% CI: 17.8 to 21.8)</td>
<td>737</td>
<td>144</td>
<td>19.5 (95% CI: 16.3 to 22.7)</td>
</tr>
<tr>
<td>2011</td>
<td>1,773</td>
<td>315</td>
<td>17.8 (95% CI: 15.8 to 19.7)</td>
<td>640</td>
<td>127</td>
<td>19.8 (95% CI: 16.4 to 23.3)</td>
</tr>
<tr>
<td>Total</td>
<td>5,597</td>
<td>1,044</td>
<td>18.7 (95% CI: 17.5 to 19.8)</td>
<td>2,299</td>
<td>434</td>
<td>18.9 (95% CI: 17.1 to 20.7)</td>
</tr>
</tbody>
</table>

Note: NV-HAP refers to nonventilator-hospital-acquired pneumonia and VAP refers to ventilator-associated pneumonia.

Table 2. Estimated Costs of NVHAP and VAP Cases

<table>
<thead>
<tr>
<th>YEAR</th>
<th>NO. OF NV-HAP CASES</th>
<th>COST FOR NV-HAP CASES</th>
<th>NO. OF VAP</th>
<th>COST FOR VAP CASES</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>1,976</td>
<td>$55,343,808</td>
<td>922</td>
<td>$34,521,524</td>
</tr>
<tr>
<td>2010</td>
<td>1,848</td>
<td>$51,758,784</td>
<td>737</td>
<td>$27,594,754</td>
</tr>
<tr>
<td>2011</td>
<td>1,773</td>
<td>$49,658,184</td>
<td>640</td>
<td>$23,962,880</td>
</tr>
<tr>
<td>Total</td>
<td>5,597</td>
<td>$156,760,776</td>
<td>2,299</td>
<td>$86,079,158</td>
</tr>
</tbody>
</table>

Davis, James, BSN, RN, CCRN, CIC. The Breadth of Hospital-Acquired Pneumonia: Nonventilated versus Ventilated Patients in Pennsylvania. PA Patient Safety Advisory 2012 Sep;9(3):99-105
Risk Factors
Risk Factors HAP (VAP and NV-HAP)

- **Host related**
 - Highest rate in Neurosurgical, Trauma and Burn Patients
 - Age > 65 years
 - Underlying illness including COPD, immunosuppression, depressed LOC and thoracic and abdominal surgery
 - Impaired Mobility

- **Device related**
 - Endotracheal tubes, mechanical ventilation, NG placement and enteral feedings
 - Lack of anatomic barriers, impaired cough, alteration of mucus and mucocilliary clearance
 - Reintubation
Risk Factors

• Personnel and procedural related factors
 ▫ Cross contamination by staff (ineffective handwashing)1
 ▫ Broad-spectrum antibiotics, use of antacids, steroids and paralytics1
 ▫ Supine positioning, HOB not elevated 30 degrees1,2
 ▫ Administration of saline during suctioning1
 ▫ Blood transfusions3
 ▫ Transport out of ICU4, 5
 ▫ Oropharyngeal colonization2,4
 • poor oral care

1 The Occurrence of Ventilator-Associated Pneumonia in a Community Hospital: Risk Factors and Clinical Outcomes. Ibrahim et al CHEST Aug 2001 120(2): 555-561.
Risk Factors for VAP

- Retrospective case control
- Medical, surgical and neuroscience units
- N=110 patients
- Mandatory modes of ventilation and positive fluid balance are risk factors for VACs.
- Benzodiazepines, opioids and paralytic agents are risk factors for IVAC.
Modifiable risk factors for pneumonia in community-dwelling older adults

• To identify modifiable risk factors, focusing on oral hygiene, for pneumonia requiring hospitalization of community-dwelling older adults.

• Prospective observational cohort study of 3,075 well-functioning community-dwelling adults aged 70 to 79 enrolled in the Health, Aging, and Body Composition Study

• 1,441 had complete data, a dental exam within 6 months of baseline

• Primary outcome was pneumonia requiring hospitalization through 2008.

• Of 1,441 participants, 193 were hospitalized for pneumonia.

• Mobility limitation and higher mean oral plaque score were two modifiable risk factors that 22% of pneumonia requiring hospitalization could be attributed. Data suggest innovative opportunities for pneumonia prevention among community-dwelling older adults.

Prevention Strategies

- Nonspecific measures include standard preventative measures, such as hand hygiene and proper use of gloves.

- Specific preventive measures are tailored to patients with risk factors for VAP/HAP.

- Three objectives for prevention:
 - 1) Reduce the exposure time from MV
 - 2) Minimize the frequency of aspirations
 - 3) Decrease bacterial colonization of the oropharynx.
Hand Washing

- Stringent hand washing is the most effective way of removing pathogens and preventing infection.
Three Key Risk Factors for VAP

RISK FACTORS

1. Colonization of dental plaque with respiratory pathogens
2. Bacterial colonization of the oropharyngeal area
3. Aspiration of subglottic secretions.

NOTE:
Routine suctioning minimizes oral secretions that can migrate to the subglottic area.

Oral Care

• Most VAP is associated with the aspiration of bacteria from the oropharynx and GI tract

• Bacteria invade the lower respiratory tract by micro- or bolus aspiration of oropharyngeal organisms

CDC, 1997; Kollef, 2002
Koeman, van der Ven, Ramsay, Hoepelman, and Bonten, 2001
Don’t let your patient’s mouth look like this
Oropharyngeal colonization

- N=89
- Examined microbial colonization of oropharynx during ICU stay
- Compared chromosomal DNA

Results
- Diagnosed 31 VAP cases
- 28 of 31 with VAP – the causative organism was identical DNA sample

Plaque

- Dental plaque serves as a bacterial reservoir and plaque colonization a specific source of gram-negative nosocomial infection

- Study comparing plaque colonization in ICU patients to healthy dental clinic patients
 - 65% of the plaque in the medical ICU patients colonized by respiratory pathogens compared to only 16% in dental clinic patients

Fourrier 1998, Scannapieco 1992
Pathogenesis

Germs in Mouth
- Dental plaque provides microhabitat
- Replicates 5x/24 hrs

Aspirated
- Most common route
- 45% healthy adults micro-aspirate in sleep

Weakened Host
- Poor cough
- Immunosuppressed
- Multiple co-morbidities

Ventilator Associated Pneumonia (VAP)—Improving Practice With An Audited Oral Care Intervention, Medway, NHS Foundation Trust, Gray K, Jarvis S, Bomford J, Hayden P, Divekar N, Medway Maritime Hospital, NHS Foundation Trust, Intensive Care Unit (ICU), Gillingham, Kent, UK.
Germs in Mouth
• Provide comprehensive oral care for all patients: the right equipment, protocols, education.

Aspiration
• Use aspiration prevention strategies.
• Recognize micro-aspiration risks and need for clean mouth.

Weak Host
• Strengthen host defenses, promote early mobility, and encourage deep breathing.
• Regulate glucose level, provide adequate nutrition, monitor use of histamine-2 blockers and proton pump inhibitors.

Prevention of HAP

Prevention Strategies
Ventilator Bundle (IHI)

- Elevation of HOB ≥ 30 degrees
- DVT prophylaxis
- Peptic Ulcer Prophylaxis (PUP)
- Daily ‘Sedation Vacation’ and readiness to extubate assessment
 - Daily screening of respiratory function
 - SBT
- Oral Care
Prevention of Ventilator-Associated Pneumonia: The Multimodal Approach of the Spanish ICU “Pneumonia Zero” Program*

Francisco Álvarez-Lerma, MD, PhD1; Mercedes Palomar-Martínez, MD, PhD2; Miguel Sánchez-García, MD, PhD3; Montserrat Martínez-Alonso, PhD4,5; Joaquín Álvarez-Rodríguez, MD, PhD6; Leonardo Lorente, MD, PhD7; Susana Arias-Rivera, RN8; Rosa García, RN9; Federico Gordo, MD, PhD10; José M. Añón, MD, PhD11; Rosa Jam-Gatell, RN, MSN12; Mónica Vázquez-Calatayud, RN, MSc13; Yolanda Agra, MD, PhD14

Critical Care Medicine, February 2018 46(2): 181-188.
Pneumonia Zero Program

- Prospective, interventional, multicenter study.
- 181 ICUs throughout Spain.
- 10 VAP prevention measures were implemented (7 mandatory and 3 recommended).
- National ICU-Acquired Infections Surveillance Study
- VAP from the incorporation of the ICUs to the project, every 3 months, compared with data of the ENVIN registry (April–June 2010) as the baseline period. VAP rates adjusted by characteristics of the hospital

Alvarez-Lerma et al Critical Care Medicine, February 2018 46(2): 181-188
Results

• 181 participating ICUs (75% of all ICUs in Spain)
• 171,237 ICU admissions, an artificial airway was present on 505,802 days (50.0% of days of stay in the ICU).
• 3,474 VAP episodes diagnosed in 3,186 patients.
• VAP incidence rate decreased from 9.83 (95% CI, 8.42–11.48) per 1,000 ventilator days in the baseline period to 4.34 (95% CI, 3.22–5.84) after 19–21 months of participation.
• Implementation of the bundle measures included in the “Pneumonia Zero” project resulted in a significant reduction of more than 50% of the incidence of ventilator-associated pneumonia in Spanish ICUs. This reduction was sustained 21 months after implementation.

Alvarez-Lerma et al Critical Care Medicine, February 2018 46(2): 181-188
Individual Components of VAP Prevention Bundle

<table>
<thead>
<tr>
<th>Seven Basic Mandatory Measures</th>
<th>Three Highly Recommended Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Education and training in appropriate airway management.(^a)</td>
<td>1. Selective decontamination of the digestive tract or selective oropharyngeal decontamination.</td>
</tr>
<tr>
<td>2. Strict hand hygiene with alcohol solutions before airway management.</td>
<td>2. Continuous aspiration of subglottic secretions.</td>
</tr>
<tr>
<td>3. Control and maintenance of cuff pressure.</td>
<td>3. Short course (2-3 doses) of systemic antibiotics during intubation of patients with previous decreased consciousness.</td>
</tr>
<tr>
<td>4. Oral hygiene with chlorhexidine.</td>
<td></td>
</tr>
<tr>
<td>5. Semirecumbent positioning. Avoidance of 0° supine positioning if possible.</td>
<td></td>
</tr>
<tr>
<td>6. Promoting procedures and protocols that safely avoid or reduce duration of mechanical ventilation.(^b)</td>
<td></td>
</tr>
<tr>
<td>7. Avoidance of elective changes of ventilator circuits, humidifiers, and endotracheal tubes.</td>
<td></td>
</tr>
</tbody>
</table>
Results

Alvarez-Lerma et al Critical Care Medicine, February 2018 46(2): 181-188
REDUCING VENTILATOR-ASSOCIATED PNEUMONIA THROUGH ADVANCED ORAL-DENTAL CARE: A 48-MONTH STUDY
Robert Garcia, BS, MMT (ASCP), CIC, et al.

Objective: To determine the effect of comprehensive oral and dental care system and protocol on the rate of VAP. (Tooth Brushing Q2, Swabbing Q4, Deep Suctioning Q6, Daily Assessment)

Methods: Patients on ventilation for more than 48 hours were studied for 2 (24 month) periods. The first 24 months with no system & protocol (pre-intervention period). The second 24 months with system & protocol (intervention period).

Results: Compliance with protocol components exceeded 80%. The rate of VAP dropped from 12/1000 vent days to 8/1000 vent days. Duration of ventilation, LOS in ICU, and mortality differed significantly between groups.

Conclusion: Advanced tools, a comprehensive oral care protocol, and staff compliance with protocol can significantly reduce rates of VAP and associated costs.

Published in American Journal of Critical Care, November 2009 18 (6): 523-32

Figure 2: Ventilator-associated pneumonia rates in the medical intensive care unit, 2001-2004, by quarter (Q). Blue line connects data points (diamonds) indicating mean annual rate of ventilator-associated pneumonia during pre-intervention period, intervention period, and confirmatory period.
Oral Care

• Dental plaque and bacterial colonization of pathogens is directly related to microaspiration of bacteria into the lungs.

• A moist environment in the mouth maintains normal oropharyngeal bacteria, preventing overgrowth of pathogenic bacteria.

• Frequent oral care, including twice a day brushing of the teeth, found a 69% reduction in respiratory tract infections.

VENTILATOR-ASSOCIATED PNEUMONIA AND ORAL CARE: A SUCCESSFUL QUALITY IMPROVEMENT PROJECT

Oral intensity: Reducing non-ventilator-associated hospital-acquired pneumonia in care-dependent neurologically impaired patients

Volume 35, Issue 2, 2013 - Canadian Journal of Neuroscience Nursing, Trudy Robertson, RN, CNN(c)

- **Purpose:** Compare the pneumonia rates between subjects who received standard oral care (retrospective group) and those who received an enhanced, prevention-based oral care protocol (prospective group).

- **Results:** A statistically significant decrease in the pneumonia rate occurred in the prospective group (p<0.05).

- **Implications:** Nurses play a vital role in preventing HAP. Foundational nursing practices, such as regular oral hygiene, are important aspects of care in preventing nosocomial infections and related costs, optimizing health, and promoting quality care.
Purpose: To identify the incidence of NV-HAP in a convenience sample of U.S. hospitals and (b) determine the effectiveness of reliably delivered basic oral nursing care in reducing NV-HAP.

Findings: The rate of NV-HAP per 100 patient days decreased from 0.49 to 0.3 (38.8%). The overall number of cases of NV-HAP was reduced by 37% during the 12-month intervention period. The avoidance of NV-HAP cases resulted in an estimated 8 lives saved, $1.72 million cost avoided, and 500 extra hospital days averted. Return on investment for the organization was $1.6 million in avoided costs.

Conclusion: NV-HAP should be elevated to the same level of concern, attention, and effort as prevention of ventilator-associated pneumonia in hospitals. Nursing needs to lead the way in the design and implementation of policies that allow for adequate time, proper oral care supplies, ease of access to supplies, clear procedures, and outcome monitoring ensuring that patients are protected from NV-HAP.
Professional organizations are now recognizing comprehensive oral care as key to addressing VAP and HAP

APIC 2009 Guide to the Elimination of Ventilator-Associated Pneumonia

*Key prevention strategies:
- Perform routine antiseptic mouth care

Example mouth care and documentation form includes the following:
- **Brush teeth q12°**
- **Provide oral care every 2 to 4 hours with antiseptic**
- **Apply mouth moisturizer to oral mucosa**

IHI Guidelines

Recommendations

Doctors and nurses can help prevent VAP by using a bundle of 5 “care steps.” The bundle of care steps are as follows:
- **Elevation of the Head of the Bed to between 30° - 45°**
- **Daily “Sedative Interruption” and Daily Assessment of Readiness to Extubate**
- **Peptic Ulcer Disease (PUD) Prophylaxis (unless contraindicated)**
- **Deep Venous Thrombosis (DVT) Prophylaxis**
- **Daily Oral Care with Chlorhexidine**

CDC Guidelines for Preventing Healthcare-Associated Pneumonia

... Develop and implement a comprehensive oral-hygiene program (that might include use of an antiseptic agent) for patients in acute-care settings or residents in long-term care facilities who are at risk for health-care associated pneumonia (II)

AACN Procedure Manual for Critical Care – Oral Care Interventions; 2005, 2010

- **Assess oral cavity and lips every 8 hours, and perform oral care every 2 to 4 hours and as needed.** With oral care, assess for buildup of plaque on teeth or potential infection related to oral abscess."**

- **Initiate oral hygiene with a pediatric or adult (soft) toothbrush, at least twice a day. Gently brush patient’s teeth to clean and remove plaque from teeth.”**

- **Use toothpaste or cleansing solution that assists in the breakdown of debris.”**

- **Cleansing solution should contain additives that assist in the breakdown of mucus in the mouth. Sodium bicarbonate assists in the removal of debris accumulation on oral tissue and teeth”**

- **In addition to brushing twice daily, use oral swabs with a 1.5% hydrogen peroxide solution to clean mouth every 2 to 4 hours.”**

- **Antiseptic oral rinses (chlorhexidine, cetlypyridinium chloride [CPC], added after brushing or done in conjunction with comprehensive oral care did achieve elimination of VAP.”**

- **“After each cleansing, apply a mouth moisturizer to the oral mucosa and lips to keep tissue moist.”**

- **“Suction oral cavity/pharynx frequently.”**

High Impact Intervention Care bundle to reduce ventilation-association pneumonia

Aim to reduce the incidence of ventilation-associated pneumonia (VAP).

The aim of the care bundle, as set out in this high impact intervention, is to ensure appropriate and high quality patient care. Regular auditing of the care bundle actions will support cycles of review and continuous improvement in care settings.

Importance of Bundles

- Should be part of an overall strategy to reduce healthcare-acquired infections in the care setting.
- Should also include hand hygiene, the use of personal protective equipment and good environmental cleaning.
- At the present time, this ventilator bundle should be used as dynamic standardisation of best practice in the management of a ventilated patient.

Why use the care bundle?
- Derived from evidence-based guidance and expert advice.
- The purpose is to act as a way of improving and measuring the implementation of key elements of care.
- The risk of VAP increases when one or more elements are excluded or not performed.
Elements of the Care Process

- Elevation of HOB
 - 30-45 degrees unless contraindicated
- Sedation level Assessment
 - Reduce sedation for assessment at least daily
- Oral Hygiene
 - Clean with chlorhexidine q 6 hours
 - wait 2 hours btwn brushing (CHG inactivated by toothpaste)
 - Brush teeth every 12 hours
- Subglottic aspiration
 - Tracheal tube with SSD if intubated >72 hours.
 - SSD every 1-2 hours
- Tracheal tube cuff pressure
 - Measure cuff pressure q 4 hours, maintain 20-30 cm H2O
- Stress ulcer prophylaxis
 - Only to high-risk patients, review prophylaxis daily.
• Review all patients sedation each day and, if appropriate, stop (Category 1B)
• Assess all patients for weaning and extubation each day each day (Category 1B)
• Avoid supine position; aim to have patient head up at least 30-45º (Category 1A)
• Consider using chlorhexidine as part of daily mouth care (Category 1A)
• Ensure that subglottic secretion drainage is used in patients likely to be ventilated for more than 48 hours (Category A)
The Intensive Care Society recommended bundle of interventions for the prevention of ventilator-associated pneumonia

- Elevation of Head of Bed
- Daily sedation interruption and assessment of readiness to extubate
- Use of subglottic secretion drainage
- Avoidance of scheduled ventilator circuit changes

ICS Guidelines Explanation

- Paucity of evidence on outcomes for tooth brushing alone, since many studies have been performed in the context of CHX as standard care.
- “Oral hygiene remains important in ventilated patients in order to remove dental plaque, for patient comfort, and to promote a ‘normal’ microbial community.”
- Oral hygiene should continue to be provided even if not using CHX.
- Toothbrushing in the ICU patients is under-researched, no clear signal of adverse outcome from toothbrushing.
- In the absence of clear evidence base for optimal oral care, removal of dental plaque and other debris from teeth, tongue and oral mucosa with a foam swab or a toothbrush appears unlikely to be harmful.

Cochrane Review

• High quality evidence that chlorhexidine, either as a mouth rinse or a gel, reduces the risk of VAP from 24% to about 18%.

• For every 17 people on ventilators for more than 48 hours in intensive care, the use of oral hygiene care including chlorhexidine will prevent one person developing VAP.

• No evidence that oral hygiene care with chlorhexidine makes a difference to the numbers of patients who die in ICU, or to the number of days on mechanical ventilation or days in ICU.

Cochrane review. Oral hygiene care for critically ill patients to prevent VAP 2017
Oral hygiene and pneumonias in nursing home elderly

- Systematic review (15 studies) on preventive effect of oral hygiene on pneumonia and respiratory tract infection on elderly people in hospitals and nursing homes. Variation in the design/quality of studies.

- The RCTs revealed positive preventive effects of oral hygiene on pneumonia and respiratory tract infection in hospitalized elderly people and elderly nursing home residents.
 - ARRs from 6.6% to 11.7% and NNTs from 8.6 to 15.3 individuals.

- Mechanical oral hygiene has a preventive effect on mortality from pneumonia and non-fatal pneumonia in hospitalized elderly people and elderly nursing home residents.

- 1 in 10 cases of death from pneumonia in elderly nursing home residents may be prevented by improving oral hygiene.

Denture wearing during sleep doubles risk of pneumonia in the very elderly

- Poor oral health and hygiene are increasingly recognized as major risk factors for pneumonia among the elderly.

- Objective: To identify modifiable oral health-related risk factors, associations of oral health behaviors and incident pneumonia in the community-living very elderly (>85 yo)

- 524 randomly selected seniors (228 men and 296 women; mean age 87.8 years)

- Examined for oral health status and oral hygiene behaviors as well as medical assessment, including blood chemistry analysis, and followed up annually until first hospitalization for or death from pneumonia.

Denture wearing in elderly

- 3-year period, 48 events associated with pneumonia (20 deaths and 28 acute hospitalizations).
- Among 453 denture wearers, 186 (40.8%) who wore their dentures during sleep were at higher risk for pneumonia than those who removed their dentures at night.
- Swallowing difficulties and overnight denture wearing were independently associated with an approximately 2.3-fold higher risk of the incidence of pneumonia.
- Denture wearers at night more likely to have tongue and denture plaque, gum inflammation, positive culture for Candida albicans, and higher levels of circulating interleukin-6.
- Denture wearing during sleep is associated with oral inflammatory and microbial and pneumonia, suggesting potential implications of oral hygiene programs for pneumonia prevention in the community.
Initiated easy protocol to ensure each patient type received comprehensive oral care.

• Initiate oral hygiene with a pediatric or adult (soft) toothbrush, at least twice a day. Gently brush patient’s teeth to clean and remove plaque from teeth.

• In addition to brushing twice daily, use oral swabs with a 1.5% hydrogen peroxide solution to clean mouth every 2 to 4 hours.

• After each cleansing, apply a mouth moisturizer to the oral mucosa and lips to keep tissue moist.

• Suction oral cavity and pharynx frequently.

• Antiseptic oral rinses (chlorhexidine, cetylpyridinium chloride [CPC]), added after brushing or done in conjunction with comprehensive oral care did achieve elimination of VAP.
Comprehensive Oral Hygiene Program

• Brushing teeth (includes gums, palate and tongue)
 ▫ Use of agents to aid in removal of plaque and debris

• Deep oropharyngeal suctioning or subglottic secretion drainage

• Use of antiseptic agents

• Moisturize mucous membranes
Meta-analysis Subglottic Secretion Drainage

- Pooled studies 848 cases in experimental group and 861 in control group
- 52% risk reduction development of VAP
- Extubation 2 days sooner than control group
- Decreased LOS in ICU by 3 days
- No significant difference in mortality

Leasure, A.R. 2012. DCCN; 31(2):102-117
Deep Oral Suctioning

- Performance improvement initiative
- Neuroscience Critical Care Unit
- Rates of VAP decreased significantly with institution of comprehensive oral hygiene program, specifically related to deep oropharyngeal suctioning.

Specialty Endotracheal Tubes

- SSD ETTs
- Silver coated ETTs
- Tapered cuffs
Strategies to Decrease Risk of HAP

- Standardized ventilator weaning protocol
- Minimize aspiration of contaminated secretions
 - HOB elevation
 - Deep suctioning or SSD ETTs for MV patients
 - Clear ventilator tube condensate to avoid back wash
 - Sucralfate or H2 blockers until enterally fed
- Comprehensive oral hygiene program for all patients
 - Tooth brushing (including gums and tongue)
 - Irrigation and suctioning of oropharynx
 - Antiseptic rinse twice daily recommended
- Encourage frequent hand washing
- Education and compliance monitoring in ICU
- Early mobility

Minei et al. 2006 J of Trauma, 60(5): 1106-1113.
A Retrospective Study of Non–Ventilator-Associated Hospital Acquired Pneumonia Incidence and Missed Opportunities for Nursing Care

Mary Tesoro, DNS, RN-BC
Diane J. Peyser, PhD, RN, NEA-BC
Farley Villarente, MS, FNP, CNOR

Tesoro et al. JONA, 48(5): 285-291
Study and Results

- 205 NV-HAP cases occurred in 1 year at Study Center, equating to an incidence of 0.47 per 1000 patient-days
- Estimated excess cost of $8.2 million. ICU transfer following pneumonia occurred in 15.6% of cases.

Missed Care

- Missed nursing care opportunities especially oral care, may aid NV-HAP prevention.
- Complete nursing care documentation was missing for most patients,
- Oral care undocumented 60.5% of the time.
- Preventable NV-HAP cases and their negative impact on cost and patient outcomes may decrease through improved basic nursing care.

Tesoro et al. JONA, 2018; 48(5): 285-291
Tesoro et al. JONA, 2018;48(5): 285-291
<table>
<thead>
<tr>
<th>Nursing intervention</th>
<th>Documented</th>
<th>Not documented</th>
<th>Not applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head-of-bed elevation</td>
<td>52.2%</td>
<td>47.8%</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(107/205)</td>
<td>(98/205)</td>
<td></td>
</tr>
<tr>
<td>Out-of-bed activity</td>
<td>32.2%</td>
<td>40.0%</td>
<td>27.8%</td>
</tr>
<tr>
<td></td>
<td>(66/205)</td>
<td>(82/205)</td>
<td>(57/205; mobility not allowed)</td>
</tr>
<tr>
<td>Incentive spirometry</td>
<td>20.0%</td>
<td>80.0%</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(41/205)</td>
<td>(164/205)</td>
<td></td>
</tr>
<tr>
<td>Coughing and deep breathing</td>
<td>16.6%</td>
<td>83.4%</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(34/205)</td>
<td>(171/205)</td>
<td></td>
</tr>
</tbody>
</table>
Frequency of documented oral care in 24 hrs before pneumonia diagnosis for NV-HAP

- 60.5% of patients with NV-HAP had no documented oral healthcare
- Only 4% of patients (8/205) received documented oral care at least 4 times a day
- This lack of documented oral healthcare demonstrates a clear missed opportunity of nursing care in potentially preventing NV-HAP.

Tesoro et al. JONA, 2018;48(5): 285-291
“Good ideas are not adopted automatically. They must be driven into practice with courageous patience.”

Admiral Hyman Rickover
Steps in Developing HAP Program

- Identify prevention of HAP as a high-priority task
- Assemble key persons
- Evidence based interventions
- Establish tracking mechanism/Obtain baseline data
- Establish program leadership to ensure program is updated regularly and accountability established
- Provide staff with summary of program
- Organize education program for hospital personnel
- Implementation (strategies to hard-wire practice)
- Sustainability
Make Education Fun!!
Nurse Driven Protocol and EBP

- Nurses play a critical role in facilitating best practice through facilitation of evidence based nursing practices.
- Successful implementation of bundles and prevention strategies results in positive patient outcomes, improved safety, and significant cost savings.

Nurse Driven Protocols Aid in Facilitating Best Practices
Questions?